
TEE Exploitation
Exploiting Trusted Apps
on Samsung’s TEE

Eloi Sanfelix
@esanfelix
Eloi Sanfelix
@esanfelix

Introduction

What’s a TEE?

Source: Global Platform

3

ARMv8 TrustZone

Secure firmwareApplication

Normal world Secure world

Application Application Application

No Hypervisor in
Secure world

EL0

EL1

EL3

EL2

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

Source: ARM

4

Example SoC: CPU vs rest

Security State propagation

ARM TZ
core

AMBA AXI3 bus

DDR Flash GPU...

AxPROT[1] indicates if transaction
Secure or Non-Secure

How is AxPROT[1] determined?

● All AXI slaves are memory mapped

– Including DDR, HW registers, etc.

– Page Table Entries include an NS-bit

● AxPROT[1] depends on CPU and PTE NS bits

CPU NS PTE NS AxPROT[1]
0 0 0
0 1 1
1 x 1

Example SoC: protection
enforcement

Example: Protecting memory

TEE setup is crucial

● A number of critical items

– Secure boot process

– Memory address space partitioning

– Peripheral setup

● Completely out of scope for us

– See this talk with C. Mune (EuskalHack 2017)

10

https://www.riscure.com/uploads/2017/08/euskalhack_2017_-_secure_initialization_of_tees_when_secure_boot_falls_short.pdf
https://twitter.com/pulsoid

ARMv8 TrustZone: Samsung

Trusted Apps
and Drivers

Android
services

Normal world Secure world

EL0

EL1

EL3

EL2

Kinibi Kernel (MTK)

RKP Hypervisor

ATF based monitor

RKP HypervisorLinux Kernel

Android userspace

11

The Kinibi TEE OS
● Developed by Trustonic

● Publicly documented previousy
– Ekoparty 13 (2017) talk and posts by Daniel Komaromy
– Synacktiv’s post on exploitation

● Main features:
– Microkernel based OS
– Trusted Apps and Drivers run in userspace
– TAs not very powerful, but drivers can compromise everything.

12

https://www.youtube.com/watch?v=L2Mo8WcmmZo
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
https://twitter.com/kutyacica
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html

Example Kinibi TA

buf : shared command buffer, also known as TCI
len : length of the shared buffer

13

Memory layout

.text

.data

.bss

stack

0x00000000

0x00001000

heap

TCIShared memory

R-X , fixed address

RW- , fixed address, no gaps

RW- , fixed address, accessible to NWd

14

Exploit mitigations

● Fixed address space (no ASLR)
● Full NX (no mmap/mprotect equivalent)
● Stack-cookies up to application
● If trusted app crashes, we can just start it again!

15

Reversing Kinibi TAs
● Use mclf-ida-loader script

● Rename trustlet and driver APIs
– Take lists from this post
– Make script to automate renaming

● Use debug information when available
– Lots of debug strings on Samsung’s TAs

16

https://github.com/ghassani/mclf-ida-loader
https://medium.com/taszksec/unbox-your-phone-part-ii-ae66e779b1d6

17

Exploiting
Trusted Apps

Stack-based buffer overflows

SVE-2018-12852

Our parsed
input

1024 byte
dest buffer

Write object
as TLV 19

SVE-2018-1852 (II)

Offset not
verified

Controlled
source and length

20

Exploiting (almost) like in the 90s

● No stack canaries → trivial to control PC

● No ALSR but strict NX → full ROP payload:

21

ROP chain: idea

22

sp

Parameters and function address are loaded from stack

ROP chain: idea

23

sp

Target function executes with provided parameters

ROP chain: idea

24

sp

We get notified that the function has successfully executed

ROP chain: idea

25

sp

Application waits until we send a notification.

ROP chain: idea

26

sp

We prepare a new stack with the next call function and parameters

ROP chain: idea

27

sp

We pivot to the new stack …

ROP chain: idea

28And the whole thing starts over again ;-)

sp

SVE-2018-12852 demo

29

ROP chain: arbitrary call

30

ROP chain: notify REE

31

ROP chain: wait and swap stacks

32

Exploiting
Trusted Apps

Shared memory issues

Shared memory → double-fetch!

34

Shared memory → double-fetch!

35

Shared memory → double-fetch!

36

Shared memory → double-fetch!

Client app can modify data between
validation and use! 37

SVE-2018-12855

Pointers written
to shared memory

Wait for
incoming message

Use pointers
without validation

38

SVE-2018-12855 (II)

1. Leaks address of TCI buffer (but no ASLR)

2. Arbitrary read/write during processing

Can we do something useful with 0x00200009 ?
39

Meet mcMap()

• Lets us map new shared buffers into the TA address space (up to 1MB).
• We learn the virtual address within the TA.
• First shared buffer turned out to be at 0x00200000 !!

40

Exploitation plan

.text

.data

.bss

stack

heap

payload

object

1. Send command

41

Exploitation plan

.text

.data

.bss

stack

heap

payload

object

1. Send command

2. Point response to
object in .bss

42

Exploitation plan

.text

.data

.bss

stack

heap

payload

object

1. Send command

2. Point response to object
in .bss

3. GET NONCE to set
object to 0x00200009

4. Trigger use of function
pointer

43

SVE-2018-12855 demo

44

Exploiting
Trusted Apps

Heap memory corruption

Kinibi heap allocator: TLDR

● First-fit allocator with single freelist

● Chunks in free list are sorted by address

● Neighboring chunks merged during list search

● Usually one heap per process, potentially more

46

Kinibi heap: mclib context

mcLib context

main_heap

num_heaps = 3

other_heaps heap_t* h1 HEAP1

heap_t* h2

HEAP2

HEAP0

47

Kinibi heap: data structures

heap_t

void *base

chunk_t *freelist

u32 size

grow_function

chunk_t

u32 flags

u32 size

Data

chunk_t *next

ALLOCATED = 0x100
LAST = 0x200
FREE = 0x800

48

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
P3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

49

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

50

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

51

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

52

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

53

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

54

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

55

Heap layout evolution

p1 = malloc(0xff0);
p2 = malloc(0x200);
p3 = malloc(0xd00);
free(p2);
free(p3);
free(p1);
malloc(0x1000);

56

SVE-2018-12853
Extract and

validate pointers

Validate length

free() shared
memory pointers!

57

Invalid free exploitation

58

Invalid free exploitation

59

Invalid free exploitation

60

Invalid free exploitation

1. Setup fake chunk in .bss

2. Use invalid free to link shared memory in

3. Modify shared memory to link fake chunk in

4. Use malloc() + memcpy to corrupt object

5. Trigger object function call

61

SVE-2018-12853 demo

62

What about heap overflows?

● Overflow free chunk → link .bss chunk

● Modify chunk size → cause chunk overlap

● Abuse chunk split or unlink to get write4

● ...

63

Additional notes (I)

● TA heap usage very limited

– Object lifetime often limited to one command.

– Difficult to find ways to control heap layout.

● In my opinion unlikely to find use-after-free and
similar bugs (but you never know!)

64

Additional notes (II)

● free() verifies chunk->flags
● malloc() zeroes the returned chunks
● No integer overflow checks during merge
● malloc() second stage scans whole heap

– Merges free chunks based on size and flags
– Creates fresh freelist from scratch
– Opportunity to corrupt freelist!

65

Post-exploitation

“what can we do now?”

Kinibi drivers
● Trusted Apps can’t do much themselves

– Send IPC messages to drivers

– Example: use hardware peripherals, access physical memory, etc.

● Drivers can own the TEE

– Can map secure memory

– Can add fastcalls to run in S-EL1

● They are userspace components

– Same format as Trusted Apps

– Same exploitation properties

67

TA ↔driver interface

TA can send a blob to a specific driver using tlApi_callDriver

CommandDriver ID

68

TA ↔driver interface

Driver receives message through drApiIpcCallToIPCH and maps command

Wait for IPC
message

Validate client
UUID

Map command
buffer

69

TA ↔driver interface
Driver parses command and writes response

70

SVE-2018-12881

SecDrv driver exposes phy2phy memcpy to all TAs!

• Length must be less than 0x600000
• Some validation performed on input/output addresses
• Can overwrite Linux kernel and RKP hypervisor

71

Exploitation

1. Use ion to map memory at fixed physical address

2. Modify struct file to get Linux kernel code exec

3. Inject shellcode into RKP code page

4. Set function pointer in RKP data to shellcode

72

SVE-2018-12881 Demo

73

Conclusions

Trusted Apps
and Drivers

Android
services

Normal world Secure world

EL0

EL1

EL3

EL2

Kinibi Kernel (MTK)

RKP Hypervisor

ATF based monitor

RKP HypervisorLinux Kernel

Android userspace

75

Kinibi exploitation takeaways
● Documented Kinibi heap exploitation

– Heap internals described

– Several avenues from corruption to exploitation

● Overall not too difficult:

– No ASLR

– Non-hardened heap

– Known shared memory addresses by design

● Full NX dealt with through call proxy ROP chain

76

Impact of TEE vulns

● Depends on what you care about!

– Vendors care about DRM, payment keys, etc.

– Users care about their data (mostly in main OS)

● TEE exploitation easier than main OS (REE)

– Compare mitigations vs. modern Android

– May make REE attacks easier

77

Thank you!
Any questions?

Eloi Sanfelix
@esanfelix

78

